Cytochrome c oxidase maintains mitochondrial respiration during partial inhibition by nitric oxide.
نویسندگان
چکیده
Nitric oxide (NO), generated endogenously in NO-synthase-transfected cells, increases the reduction of mitochondrial cytochrome c oxidase (CcO) at O2 concentrations ([O2]) above those at which it inhibits cell respiration. Thus, in cells respiring to anoxia, the addition of 2.5 microM L-arginine at 70 microM O2 resulted in reduction of CcO and inhibition of respiration at [O2] of 64.0+/-0.8 and 24.8+/-0.8 microM, respectively. This separation of the two effects of NO is related to electron turnover of the enzyme, because the addition of electron donors resulted in inhibition of respiration at progressively higher [O2], and to their eventual convergence. Our results indicate that partial inhibition of CcO by NO leads to an accumulation of reduced cytochrome c and, consequently, to an increase in electron flux through the enzyme population not inhibited by NO. Thus, respiration is maintained without compromising the bioenergetic status of the cell. We suggest that this is a physiological mechanism regulated by the flux of electrons in the mitochondria and by the changing ratio of O2:NO, either during hypoxia or, as a consequence of increases in NO, as a result of cell stress.
منابع مشابه
Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport.
Various authors have suggested that nitric oxide (.NO) exerts cytotoxic effects through the inhibition of cellular respiration. Indeed, in intact cells .NO inhibits glutamate-malate (complex I) as well as succinate (complex II)-supported mitochondrial electron transport, without affecting TMPD/ascorbate (complex IV)-dependent respiration. However, experiments in our lab using isolated rat heart...
متن کاملInvolvement of Cytochrome P-450 in n-Butyl Nitrite-Induced Hepatocyte Cytotoxicity
Addition of n-butyl nitrite to isolated rat hepatocytes caused an immediate glutathione depletion followed by an inhibition of mitochondrial respiration, inhi- bition of glycolysis and ATP depletion. At cytotoxic butyl nitrite concentrations, lipid peroxidation occurred before the plasma membrane was disrupted. Cytochrome P-450 inhibitors inhibited peroxynitrite formation and prev...
متن کاملNitric oxide and peroxynitrite exert distinct effects on mitochondrial respiration which are differentially blocked by glutathione or glucose.
Nitric oxide (NO) and peroxynitrite both inhibit respiration by brain submitochondrial particles, the former reversibly at cytochrome c oxidase, the latter irreversibly at complexes I-III. Both GSH (IC50 =10 microM) and glucose (IC50 = 8 mM) prevented inhibition of respiration by peroxynitrite (ONOO-), but neither glucose (100 mM) nor GSH (100 microM) affected that by NO. Thus, unless ONOO- is ...
متن کاملInteraction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity.
Acute cyanide toxicity is attributed to inhibition of cytochrome c oxidase (CcOX), the oxygen-reducing component of mitochondrial electron transport; however, the mitochondrial action of cyanide is complex and not completely understood. State-3 oxygen consumption and CcOX activity were studied in rat N27 mesencephalic cells to examine the functional interaction of cyanide and nitric oxide (NO)....
متن کاملInhibition of cellular respiration by endogenously produced carbon monoxide.
Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 120 Pt 1 شماره
صفحات -
تاریخ انتشار 2007